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Curtain-Raiser

I In the mid 80’s advances in Conformal Quantum Field
Theory in 1d (space) and a new mechanism for anomaly
cancellation converged into the String Renaissance.

I A euphoric blend of Mathematics and tantalizing hints of
Quantum (Super)Gravity was marketed to everybody with
unprecedented success for abstract Science. Most of the
talented students and younger researchers in Theoretical
Physics joined the gold rush. Some struck it rich.

I This concentration of talent produced the AdS/CFT
correspondence, which, in turn, brought about a Conformal
Quantum Field Theory Renaissance for dimensions d ≥ 2.
Together with advances in Hamiltonian RG for Many Body
Theory, this may rejuvenate the successful overlap of
some interests of Particle Theorists and Condensed Matter
Theorists of the past, in the context of Critical Phenomena.
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Introduction

I In 2008, Pavlos Vranas invited me to attend a workshop at
Livermore on BSM Physics, although he knew that I felt
that composite models in general were unlikely to become
valid BSM Physics because of the high precision LEP
results – and had not worked on so-called “lattice BSM”.

I The talks related to the conformal window in YM convinced
me that a blind application of standard LFT techniques to a
model connecting a free marginally unstable UVFP to a
truly interacting IRFP would not work. One would not be
able to control by numerical MC this two scale problem in
the foreseeable future.

I I commented at some point that using radial quantization –
inside the conformal window – would at least turn the
determination of non-canonical IR scaling dimensions into
a mass computation, something we know how to do well.
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CFT basics

I A scale invariant Euclidean Field Theory in d-dimensional
Euclidean space provides a unitary representation of its
group of similarities which consists of translations Pµ,
rotations Mµν and scaling D. Near the identity there are
d + d(d−1)

2 + 1 = d(d+1)
2 + 1 parameters.

I Often, the behaviour at infinity of space is such that I, the
inversion ~x → ~x

x2 is also represented. Near the identity this
adds d more generators, given by IPµI, raising the number
of parameters to (d+1)(d+2)

2 . (Realizing I is not necessary.)
I The global conformal group is (S)O(d + 1,1).

Geometrically, the group is the group of Möbius
transformations of d-dimensional one-point compactified
flat Euclidean space. It is generated by reflections in
planes and spheres. (The component connected to the
identity suffices.)
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Radial Quantization basics

I The group of Euclidean distance preserving maps provides
a single tempting slicing of spacetime for quantization. One
chooses a “time” evolution direction. The full symmetry no
longer is explicit. But, it is there, if things go well.

I The Möbius group provides more tempting ways of slicing
and associated quantizations. In radial quantization one
picks a point as the “origin” and ends up with an Sd−1 × R
cylinder where translations in the R direction are generated
by D, with D bounded from below.

I Minus the logarithm of the transfer matrix is the lattice
version of D; its spectrum is discrete, given by the set of
scaling dimensions of the theory.
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One real free massless scalar field example
I Carry out the following steps: (1) Write down the action (2)

Change from cartesian coordinates to radial ones (3)
Replace r by r0e−t and change variables in the path
integral to |x |

d−2
2 φ(x) = Φ(t , ω̂) where (r0e−t , ω̂) is the point

x in spherical coordinates. (4) Ignore the Jacobian on
account that it is field independent.

I Set r0 = 1. The integrand of the action against dt has no
explicit t-dependence. Get the “Hamiltonian” from the
action and diagonalize the quadratic form in the spherical
harmonics basis. Introduce creation/annihilation operators
by the Euclidean version of Feynman’s prescription.

I This is all worked out very clearly in Fubini, Hanson and
Jackiw, PRD 7, 1732 (1972) who introduced radial
quantization. For d = 3, for example, you find that
D =

∑
l=0,1,2...,m=−|l|,−|l|+1,...|l|(l + 1

2)a†lmalm where we
chose to give zero value to the lowest eigenvalue of D.
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Example contd: Towers in spectrum and interactions

I The l(l + 1) got changed into a (l + 1/2)2 = l(l + 1) + 1/4
by the field rescaling. This produces the right set of
dimensions for the free field. The 1/4-constant is not a
mass term in flat space. “Tuning to criticality” amounts to
setting the mass term to a value that gives equally-spaced
distinct eigenvalue towers to D. This follows from
conformal symmetry alone. “Away from criticality” means
violating translational invariance. ∃ dilation preserving
regularizations.

I For general d one gets (l + d−2
2 )2. There is no shift for

d = 2 because the field is dimensionless. For d = 1, l = 0.
I To maintain t-independence only a potential proportional to

(φ2)
d

d−2 is allowed in the original action. With it, FHJ set up
Feynman perturbation theory.

I Things look fine for d ≥ 3. The cases d = 1,2 are special.
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A lattice example: d=2 Ising.

I One way to interpret the infinite power at d = 2 is that it
forces φ2 = 1, so that (φ2)±∞ = 1, giving the Ising model if
we assume we are on a lattice. ¨̂

I Radial quantization means working on S × R. It is
straightforward to put this on a lattice.

I D becomes then the logarithm of the transfer matrix with
periodic boundary conditions in the space direction.

I The transfer matrix can be exactly diagonalized. (See the
Stat. Mech. book by K. Huang for example.)

I To make the model have an IRFP we choose to set the
couplings to the symmetric critical value.

I We put N spins round the ring and calculate the lowest
eigenvalue of D in the odd (under spin flip) sector.
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d=2 Ising continued

I The answer we need to get is that this eigenvalue is equal
to 1/4, the η-exponent in this case.

I The finite N formula is N
π [E1(N)− E0(N)] where E0,1(N)

are the logarithms of the highest eigenvalues of the
transfer matrix in the even and odd sectors respectively.

I E1(N)− E0(N) = 1
2

[
γ(0) + γ(2π

N ) + ...+ γ(2π − 2π
N )
]

−1
2

[
γ( πN ) + γ(3π

N + ...+ γ(2π − π
N )
]

cosh γ(q) = 2− cos q.
I For N = 1 we get 0.28055, for N = 10 we get 0.25106 and

for N = 20 we get 0.25026. So it works fine in this case.
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d=3 Ising

I Now we need to latticize S2 × R and put an Ising model on
that lattice.

I A first attempt was made with Rich Brower and George
Fleming; I spoke about this four years ago at a BNL
workshop when we had only preliminary data.

I The project produced a reasonable value for the lowest
dimension in the odd sector, but the approach to the limit
remained somewhat erratic.

I Also, the calculation had to be pushed to large lattices,
while the initial hope was that this be a more efficient way
to get critical exponents than the ones based on the usual
way of quantizing the system.
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Lessons from first simulation for d = 3 Ising
I We did not discretize S2 but rather a piecewise flat

approximation to it, a 12 faced Icosahedron which had
conical singularities. These are points where the angle
covered going round them is less then 2π. There is no way
to avoid such singularities if one insists on preserving the
topology while using only flat two dimensional pieces.
These singularities would impact the approach to the limit,
and, in addition, this limit won’t have spherical symmetry.

I We used a cluster algorithm which limited our flexibility in
choosing the action: we could not experiment with nnn
couplings for example. We did not try continuous fields.

I We did not work out fully the group theoretical details.
I Having made sure that lattice radial quantization is feasible

we proceeded to refine the method. There are many
choices to make and it is not clear a priori which will work
out best. I decided that by pursuing different lines, more
ground gets covered and overall progress gets sped up.
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Cubature: one way to discretize the sphere

I I place on S2 points in complete orbits under the 120
element Icosahedral group Ih.

I Each new orbit comes with a common new weight wi which
is adjusted to enhance the symmetry under cubature.

I The criterion is that
∫

S2 f (ω̂)d ω̂ =
∑N

i=1 wi f (ω̂i) for f ’s which
are linear combinations of functions of ω̂, ω̂ ∈ S2 of angular
momentum L ≤ Lmax.

I One can add one 20, one 30 and one 60 points orbit and
any number of 120 points orbits.

I One does not have to include 20,30,60 point orbits.
I The nr. of vertices needed for a given Lmax can be found

using the decompositions of SO(3) irreps into Ih irreps.
I The weights wi are determined by linear equations.
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The Action.

I Start from a continuum action with one UV cutoff 1/
√

s,
A =

∫
d ω̂d ω̂′Φ(ω̂)K (ω̂, ω̂′)Φ(ω̂′) +

∫
d ω̂V (Φ(ω̂)).

(t-direction is treated in a standard way). K (ω̂, ω̂′) is the
matrix element of the heat kernel on S2, K = (1− es∂2

ω̂)/s.
I For a set of N points, set Ki,j = K (ω̂i , ω̂j). The discrete A is

A =
∑

i,j ΦiK ◦i,jΦj +
∑

i wiV (Φi). It has two UV cutoffs.

1 ≤ i , j ≤ N, K ◦i,j =

{
wiKi,jwj if i 6= j
−
∑

k 6=i wiKi,kwk if i = j .

I For a Φ given by a sum of l ≤ λN spherical waves, A will be
given by its discrete counterpart for l ≤ λN to a good
approximation for s = const/N and V polynomial.

I Preserving a discrete translational invariance in the “time”
direction gives a transfer matrix as usual.
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Example: 3D Ising on Icosahedron

I I constructed the transfer matrix for N = 12 (arranged as the vertices of
an Icosahedron) with Ising spin variables replacing the fields Φi ,
producing a 212 dimensional Hilbert space. The transfer matrix was
exactly diagonalized numerically.

I Its kernel K ◦ was chosen to respect Ih and reproduce the continuum
eigenvalues l(l + 1) exactly to l = 3. (A “mass” term is irrelevant).

I The coupling of the time hopping part was adjusted to ensure
approximate equality of the lowest gaps between tower base and first
excited state for the lowest towers in the odd and even sectors.

I The raw results for the excitation energies, E , are

Sect. Sym l E
Even ε 0 1.31428
Even ε 1 2.16494
Even Tµν 2 2.39325
Even ε 2 2.78684
Even skip 12 states
Even ε′ 0 3.12558

Sect Sym l E
Odd σ 0 0.42744
Odd σ 1 1.26897
Odd σ 2 1.90395
Odd σ 3 (F1u ) 2.38953
Odd ∂2σ 0 2.47213
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Dimensions

Determining the scale from the spacings of the lowest tower members in the
even and odd sector I get ρ = 1.182(6) and this produces the following
dimensions after multiplication by ρ.

Sym L dim exact
σ 0 0.505 0.518
∂2σ 0 2.996 2.518

Sym L dim exact
ε 0 1.553 1.413
Tµν 2 2.922 3
ε′ 0 3.694 3.8

The “dim” column is the numerical result. The “exact” column is either literal
or to the accuracy shown. The “exact” entry for the descendant ∂2σ is
inferred. There is no way to credibly estimate the errors of the numerical
results. The error on ρ merely is an indication for the accuracy on the scale of
the lowest gaps in the towers. For a lattice of 12 points one hardly could
expect better numbers. There is no reason to take these numbers seriously,
except feel encouraged.

In the published paper, PRD 90, 114501 (2014), there were a few
typographical errors and one state was likely misidentified. This has been
corrected above.
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Hyperbolic lattices
I On the cylinder the spectrum of the dilatation operator is

directly accessible. It is a Schrödinger picture. The OPE
coefficients of the scaling fields are less accessible.

I For a Heisenberg picture we ought to work on Sd . Any
metric that is conformal to the flat metric would do. We
need a good discretization for that metric.

I Standard LFT takes a discrete (Coxeter) subgroup of the
geometric group and uses its Cayley graph as the lattice.

I Coxeter subgroups of the symmetry group of one sheet of
a two-sheeted Hyperboloid in d + 2 dimensions provide
new opportunities. The only difference to the familiar case
is the bilinear form defining elementary reflections.

I The lattices of interest are non amenable. The targeted
system then resides on their “boundaries”. As it had to be,
an ambiguity is present leaving the conformal factor
undetermined. Cannot go into details at this time !
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Curtain falls

I Draw your own conclusions !

I I thank the organizers for
inviting me to tell you my story.
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